Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Neurology ; 102(9): e209307, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626384

RESUMO

BACKGROUND AND OBJECTIVES: Elevated levels of Alzheimer disease (AD) blood-based biomarkers are associated with accelerated cognitive decline. However, their distinct relationships with specific cognitive and functional domains require further investigation. We aimed at estimating the associations between AD blood-based biomarkers and the trajectories of distinct cognitive and functional domains over a 5-year follow-up period. METHODS: We conducted a clinic-based prospective study using data from the MEMENTO study, a nationwide French cohort. We selected dementia-free individuals at baseline aged 60 years or older. Baseline measurements of ß-amyloid (Aß) 40 and 42, phosphorylated tau (p-tau181), and neurofilament light chain (NfL) concentrations were obtained using the Simoa HD-X analyzer. Mini-Mental State Examination (MMSE), Free and Cued Selective Reminding Test (FCSRT), animal fluency, Trail Making Tests A and B, Short Physical Performance Battery (SPPB), and Instrumental Activities of Daily Living were administered annually for up to 5 years. We used linear mixed models, adjusted for potential confounders, to model AD biomarkers' relation with cognitive and functional decline. RESULTS: A total of 1,938 participants were included in this study, with a mean (SD) baseline age of 72.8 (6.6) years, and 62% were women. Higher baseline p-tau181 and NfL were associated with significantly faster decline in most cognitive, physical, and functional outcomes (+1 SD p-tau181: ßMMSE = -0.055, 95% CI -0.067 to -0.043, ßFCSRT = -0.034, 95% CI -0.043 to -0.025, ßfluency = -0.029, 95% CI -0.038 to -0.020, ßSPPB = -0.040, 95% CI -0.057 to -0.022, and ß4IADL = -0.115, 95% CI 0.091-0.140. +1 SD NfL: ßMMSE = -0.039, 95% CI -0.053 to -0.025, ßFCSRT = -0.022, 95% CI -0.032 to -0.012, ßfluency = -0.014, 95% CI -0.024 to -0.004, and ß4IADL = 0.077, 95% CI 0.048-0.105). A multiplicative association of p-tau181 and NfL with worsening cognitive and functional trajectories was evidenced. Lower Aß42/40 ratio was only associated with slightly faster cognitive decline in FCSRT and semantic fluency (+1 SD: ß = 0.011, 95% CI 0.002-0.020, and ß = 0.011, 95% CI 0.003-0.020, respectively). These associations were not modified by APOE ε4, sex, nor education level. DISCUSSION: In a memory clinic sample, p-tau181 and NfL, both independently and jointly, are linked to more pronounced cognitive, physical and functional declines. Blood-based biomarker measurement in AD research may provide useful insights regarding biological processes underlying cognitive, physical, and functional declines in at-risk individuals.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Feminino , Masculino , Proteínas tau , Estudos Prospectivos , Atividades Cotidianas , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico , Biomarcadores , Cognição
2.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200222, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635941

RESUMO

BACKGROUND AND OBJECTIVES: Thalamic atrophy can be used as a proxy for neurodegeneration in multiple sclerosis (MS). Some data point toward thalamic nuclei that could be affected more than others. However, the dynamic of their changes during MS evolution and the mechanisms driving their differential alterations are still uncertain. METHODS: We paired a large cohort of 1,123 patients with MS with the same number of healthy controls, all scanned with conventional 3D-T1 MRI. To highlight the main atrophic regions at the thalamic nuclei level, we validated a segmentation strategy consisting of deep learning-based synthesis of sequences, which were used for automatic multiatlas segmentation. Then, through a lifespan-based approach, we could model the dynamics of the 4 main thalamic nuclei groups. RESULTS: All analyses converged toward a higher rate of atrophy for the posterior and medial groups compared with the anterior and lateral groups. We also demonstrated that focal MS white matter lesions were associated with atrophy of groups of nuclei when specifically located within the associated thalamocortical projections. The volumes of the most affected posterior group, but also of the anterior group, were better associated with clinical disability than the volume of the whole thalamus. DISCUSSION: These findings point toward the thalamic nuclei adjacent to the third ventricle as more susceptible to neurodegeneration during the entire course of MS through potentiation of disconnection effects by regional factors. Because this information can be obtained even from standard T1-weighted MRI, this paves the way toward such an approach for future monitoring of patients with MS.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/patologia , Imageamento por Ressonância Magnética , Atrofia/patologia
3.
Neurology ; 102(8): e209219, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38527237

RESUMO

BACKGROUND AND OBJECTIVES: Patients' comorbidities can affect Alzheimer disease (AD) blood biomarker concentrations. Because a limited number of factors have been explored to date, our aim was to assess the proportion of the variance in fluid biomarker levels explained by the clinical features of AD and by a large number of non-AD-related factors. METHODS: MEMENTO enrolled 2,323 individuals with cognitive complaints or mild cognitive impairment in 26 French memory clinics. Baseline evaluation included clinical and neuropsychological assessments, brain MRI, amyloid-PET, CSF (optional), and blood sampling. Blood biomarker levels were determined using the Simoa-HDX analyzer. We performed linear regression analysis of the clinical features of AD (cognition, AD genetic risk score, and brain atrophy) to model biomarker concentrations. Next, we added covariates among routine biological tests, inflammatory markers, demographic and behavioral determinants, treatments, comorbidities, and preanalytical sample handling in final models using both stepwise selection processes and least absolute shrinkage and selection operator (LASSO). RESULTS: In total, 2,257 participants were included in the analysis (median age 71.7, 61.8% women, 55.2% with high educational levels). For blood biomarkers, the proportion of variance explained by clinical features of AD was 13.7% for neurofilaments (NfL), 11.4% for p181-tau, 3.0% for Aß-42/40, and 1.4% for total-tau. In final models accounting for non-AD-related factors, the variance was mainly explained by age, routine biological tests, inflammatory markers, and preanalytical sample handling. In CSF, the proportion of variance explained by clinical features of AD was 24.8% for NfL, 22.3% for Aß-42/40, 19.8% for total-tau, and 17.2% for p181-tau. In contrast to blood biomarkers, the largest proportion of variance was explained by cognition after adjustment for covariates. The covariates that explained the largest proportion of variance were also the most frequently selected with LASSO. The performance of blood biomarkers for predicting A+ and T+ status (PET or CSF) remained unchanged after controlling for drivers of variance. DISCUSSION: This comprehensive analysis demonstrated that the variance in AD blood biomarker concentrations was mainly explained by age, with minor contributions from cognition, brain atrophy, and genetics, conversely to CSF measures. These results challenge the use of blood biomarkers as isolated stand-alone biomarkers for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Feminino , Masculino , Doença de Alzheimer/genética , Proteínas tau , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva/psicologia , Atrofia , Fragmentos de Peptídeos
4.
Brain Commun ; 6(2): fcae055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444913

RESUMO

Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy-Richardson syndrome. We combined multiple datasets (n = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and n = 62 MRI of progressive supranuclear palsy-Richardson syndrome patients from the Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supranuclear palsy-Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy and progressive supranuclear palsy-Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supranuclear palsy-Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP.

5.
Alzheimers Dement ; 20(3): 1894-1912, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148705

RESUMO

INTRODUCTION: The "prion-like" features of Alzheimer's disease (AD) tauopathy and its relationship with amyloid-ß (Aß) have never been experimentally studied in primates phylogenetically close to humans. METHODS: We injected 17 macaques in the entorhinal cortex with nanograms of seeding-competent tau aggregates purified from AD brains or control extracts from aged-matched healthy brains, with or without intracerebroventricular co-injections of oligomeric-Aß. RESULTS: Pathological tau injection increased cerebrospinal fluid (CSF) p-tau181 concentration after 18 months. Tau pathology spreads from the entorhinal cortex to the hippocampal trisynaptic loop and the cingulate cortex, resuming the experimental progression of Braak stage I to IV. Many AD-related molecular networks were impacted by tau seeds injections regardless of Aß injections in proteomic analyses. However, we found mature neurofibrillary tangles, increased CSF total-tau concentration, and pre- and postsynaptic degeneration only in Aß co-injected macaques. DISCUSSION: Oligomeric-Aß mediates the maturation of tau pathology and its neuronal toxicity in macaques but not its initial spreading. HIGHLIGHTS: This study supports the "prion-like" properties of misfolded tau extracted from AD brains. This study empirically validates the Braak staging in an anthropomorphic brain. This study highlights the role of oligomeric Aß in driving the maturation and toxicity of tau pathology. This work establishes a novel animal model of early sporadic AD that is closer to the human pathology.


Assuntos
Doença de Alzheimer , Príons , Animais , Humanos , Idoso , Doença de Alzheimer/patologia , Macaca/metabolismo , Proteômica , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia
6.
Alzheimers Res Ther ; 15(1): 205, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993894

RESUMO

BACKGROUND: Cognitive complaints are often regarded as an early sign of Alzheimer's disease (AD) but may also occur in several other conditions and contexts. This study examines the correlates of cognitive complaint trajectories over a 5-year period in individuals who shared similar objective cognitive trajectories. METHODS: We analyzed a subsample (n = 1748) of the MEMENTO cohort, consisting of individuals with subjective cognitive decline or mild cognitive impairment at baseline. Participants were stratified based on their latent MMSE trajectory over a 5-year period: "high and increasing," "subtle decline," and "steep decline." Within each of the three strata, we used a latent-class longitudinal approach to identify distinct trajectories of cognitive complaints. We then used multiple logistic regressions to examine the association between these complaint trajectories and several factors, including AD biomarkers (blood pTau/Aß42 ratio, cortical thickness, APOE genotype), anxiety, depression, social relationships, a comorbidity-polypharmacy score, and demographic characteristics. RESULTS: Among participants with high and increasing MMSE scores, greater baseline comorbidity-polypharmacy scores (odds ratio (OR) = 1.30, adjusted p = 0.03) were associated with higher odds of moderate and increasing cognitive complaints (as opposed to mild and decreasing complaints). Baseline depression and social relationships also showed significant associations with the complaint pattern but did not survive correction for multiple comparisons. Among participants with subtle decline in MMSE scores, greater baseline depression (OR = 1.76, adjusted p = 0.02) was associated with higher odds of moderate and increasing cognitive complaints (versus mild and decreasing). Similarly, baseline comorbidity-polypharmacy scores and pTau/Aß42 ratio exhibited significant associations, but they did not survive correction. Among participants with a steep decline in MMSE scores, greater baseline comorbidity-polypharmacy scores increased the odds of moderate complaints (versus mild, OR = 1.38, unadjusted p = 0.03, adjusted p = 0.32), but this effect did not survive correction for multiple comparisons. CONCLUSIONS: Despite similar objective cognitive trajectory, there is heterogeneity in the subjective perception of these cognitive changes. This perception was explained by both AD-related and, more robustly, non-AD-related factors. These findings deepen our understanding of the multifaceted nature of subjective cognitive complaints in individuals at risk for dementia and underscore the importance of considering a range of factors when interpreting cognitive complaints.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Cognição
7.
Artif Intell Med ; 144: 102636, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37783553

RESUMO

Alzheimer's disease and Frontotemporal dementia are common forms of neurodegenerative dementia. Behavioral alterations and cognitive impairments are found in the clinical courses of both diseases, and their differential diagnosis can sometimes pose challenges for physicians. Therefore, an accurate tool dedicated to this diagnostic challenge can be valuable in clinical practice. However, current structural imaging methods mainly focus on the detection of each disease but rarely on their differential diagnosis. In this paper, we propose a deep learning-based approach for both disease detection and differential diagnosis. We suggest utilizing two types of biomarkers for this application: structure grading and structure atrophy. First, we propose to train a large ensemble of 3D U-Nets to locally determine the anatomical patterns of healthy people, patients with Alzheimer's disease and patients with Frontotemporal dementia using structural MRI as input. The output of the ensemble is a 2-channel disease's coordinate map, which can be transformed into a 3D grading map that is easily interpretable for clinicians. This 2-channel disease's coordinate map is coupled with a multi-layer perceptron classifier for different classification tasks. Second, we propose to combine our deep learning framework with a traditional machine learning strategy based on volume to improve the model discriminative capacity and robustness. After both cross-validation and external validation, our experiments, based on 3319 MRIs, demonstrated that our method produces competitive results compared to state-of-the-art methods for both disease detection and differential diagnosis.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Doença de Alzheimer/diagnóstico por imagem , Demência Frontotemporal/diagnóstico por imagem , Diagnóstico Diferencial , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina
8.
Hum Brain Mapp ; 44(17): 5602-5611, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37615064

RESUMO

Atrophy related to multiple sclerosis (MS) has been found at the early stages of the disease. However, the archetype dynamic trajectories of the neurodegenerative process, even prior to clinical diagnosis, remain unknown. We modeled the volumetric trajectories of brain structures across the entire lifespan using 40,944 subjects (38,295 healthy controls and 2649 MS patients). Then, we estimated the chronological progression of MS by assessing the divergence of lifespan trajectories between normal brain charts and MS brain charts. Chronologically, the first affected structure was the thalamus, then the putamen and the pallidum (around 4 years later), followed by the ventral diencephalon (around 7 years after thalamus) and finally the brainstem (around 9 years after thalamus). To a lesser extent, the anterior cingulate gyrus, insular cortex, occipital pole, caudate and hippocampus were impacted. Finally, the precuneus and accumbens nuclei exhibited a limited atrophy pattern. Subcortical atrophy was more pronounced than cortical atrophy. The thalamus was the most impacted structure with a very early divergence in life. Our experiments showed that lifespan models of most impacted structures could be an important tool for future preclinical/prodromal prognosis and monitoring of MS.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Longevidade , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Atrofia/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia
10.
Alzheimers Dement ; 19(12): 5700-5718, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37422285

RESUMO

INTRODUCTION: This study aims to examine whether physical activity moderates the association between biomarkers of brain pathologies and dementia risk. METHODS: From the Memento cohort, we analyzed 1044 patients with mild cognitive impairment, aged 60 and older. Self-reported physical activity was assessed using the International Physical Activity Questionnaire. Biomarkers of brain pathologies comprised medial temporal lobe atrophy (MTA), white matter lesions, and plasma amyloid beta (Aß)42/40 and phosphorylated tau181. Association between physical activity and risk of developing dementia over 5 years of follow-up, and interactions with biomarkers of brain pathologies were tested. RESULTS: Physical activity moderated the association between MTA and plasma Aß42/40 level and increased dementia risk. Compared to participants with low physical activity, associations of both MTA and plasma Aß42/40 on dementia risk were attenuated in participants with high physical activity. DISCUSSION: Although reverse causality cannot be excluded, this work suggests that physical activity may contribute to cognitive reserve. HIGHLIGHTS: Physical activity is an interesting modifiable target for dementia prevention. Physical activity may moderate the impact of brain pathology on dementia risk. Medial temporal lobe atrophy and plasma amyloid beta 42/40 ratio were associated with increased dementia risk especially in those with low level of physical activity.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência , Humanos , Pessoa de Meia-Idade , Idoso , Demência/complicações , Peptídeos beta-Amiloides , Imageamento por Ressonância Magnética , Progressão da Doença , Disfunção Cognitiva/patologia , Biomarcadores , Encéfalo/patologia , Atrofia/patologia , Doença de Alzheimer/patologia , Proteínas tau
11.
J Alzheimers Dis ; 94(4): 1527-1534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37458033

RESUMO

BACKGROUND: Mnemonic discrimination is the behavioral ability stemming from pattern separation, which is the neural process of establishing independent and non-overlapping new memories. Over the past two decades, its assessment in various populations has contributed to a better conceptual understanding of age-related memory decline. OBJECTIVE: To assess the clinical relevance of mnemonic discrimination in the memory clinics setting. METHODS: This retrospective study was performed in 90 patients with a Mini-Mental State Examination (MMSE)>18 who consulted our memory clinic for the first time. All patients were tested with the Mnemonic Similarity Task, a freely available computerized test. Global cognitive function, executive function, visuoconstructional abilities, and verbal and visual episodic memory were also collected, together with the diagnosis after the initial clinical assessment (subjective cognitive complaint [SCC], mild cognitive impairment [MCI], or mild dementia). RESULTS: Mnemonic discrimination performance was correlated with global cognitive function, executive function, and visual and verbal episodic memory scores, independent of age. It discriminated patients with SCC from those with MCI (amnestic or non-amnestic) with moderate accuracy (AUC = 0.77-0.78), similar to MMSE and the Frontal Assessment Battery (AUC = 0.74-0.84). Mnemonic discrimination performance did not distinguish between amnestic and non-amnestic MCI and the variability of the measure was important within groups. CONCLUSION: Mnemonic discrimination performance involves many cognitive domains and discriminates between patients with SCC and MCI with performance equivalent to "paper-and-pencil" screening tests. Further dedicated prospective studies will determine whether this task is of interest beyond research purposes, as a diagnostic or screening tool in primary care.


Assuntos
Disfunção Cognitiva , Memória Episódica , Humanos , Projetos Piloto , Estudos Retrospectivos , Estudos Prospectivos , Testes Neuropsicológicos , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia
12.
Brain Commun ; 5(3): fcad175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389302

RESUMO

The clinical benefit associated with anti-amyloid immunotherapies, a new class of drugs for the treatment of Alzheimer's disease, is predicated on their ability to modify disease course by lowering brain amyloid levels. At the time of writing, two amyloid-lowering antibodies, aducanumab and lecanemab, have obtained United States Food and Drug Administration accelerated approval, with further agents of this class in the Alzheimer's disease treatment pipeline. Based on limited published clinical trial data to date, regulators, payors and physicians will need to assess their efficacy, clinical effectiveness and safety, as well as cost and accessibility. We propose that attention to three important questions related to treatment efficacy, clinical effectiveness and safety should guide evidence-based consideration of this important class of drugs. These are: (1) Were trial statistical analyses appropriate and did they convincingly support claims of efficacy? (2) Do reported treatment effects outweigh safety concerns and are they generalizable to a representative clinical population of people with Alzheimer's disease? and (3) Do the data convincingly demonstrate disease course modification, suggesting that increasing clinical benefits beyond the duration of the trials are likely? We suggest specific approaches to interpreting trial results for these drugs and highlight important areas of uncertainty where additional data and a cautious interpretation of existing results is warranted. Safe, effective and accessible treatments for Alzheimer's disease are eagerly awaited by millions of patients and their caregivers worldwide. While amyloid-targeting immunotherapies may be promising disease-modifying Alzheimer's disease treatments, rigorous and unbiased assessment of clinical trial data is critical to regulatory decision-making and subsequently determining their provision and utility in routine clinical practice. Our recommendations provide a framework for evidence-based appraisal of these drugs by regulators, payors, physicians and patients.

13.
JAMA Neurol ; 80(7): 659-660, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37093582

RESUMO

This Viewpoint discusses the benefits of clinical trials with a delayed-start design and analysis of downstream biomarkers to examine whether antimyeloid immunotherapy changes the course of early Alzheimer disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Biomarcadores , Projetos de Pesquisa , Ensaios Clínicos como Assunto
14.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993352

RESUMO

Background: Atrophy related to Multiple Sclerosis (MS) has been found at the early stages of the disease. However, the archetype dynamic trajectories of the neurodegenerative process, even prior to clinical diagnosis, remain unknown. Methods: We modeled the volumetric trajectories of brain structures across the entire lifespan using 40944 subjects (38295 healthy controls and 2649 MS patients). Then, we estimated the chronological progression of MS by assessing the divergence of lifespan trajectories between normal brain charts and MS brain charts. Results: Chronologically, the first affected structure was the thalamus, then the putamen and the pallidum (3 years later), followed by the ventral diencephalon (7 years after thalamus) and finally the brainstem (9 years after thalamus). To a lesser extent, the anterior cingulate gyrus, insular cortex, occipital pole, caudate and hippocampus were impacted. Finally, the precuneus and accumbens nuclei exhibited a limited atrophy pattern. Conclusion: Subcortical atrophy was more pronounced than cortical atrophy. The thalamus was the most impacted structure with a very early divergence in life. It paves the way toward utilization of these lifespan models for future preclinical/prodromal prognosis and monitoring of MS.

15.
Alzheimers Dement ; 19(8): 3283-3294, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36749884

RESUMO

INTRODUCTION: The three clinical variants of frontotemporal dementia (behavioral variant [bvFTD], semantic dementia, and progressive non-fluent aphasia [PNFA]) are likely to develop over decades, from the preclinical stage to death. METHODS: To describe the long-term chronological anatomical progression of FTD variants, we built lifespan brain charts of normal aging and FTD variants by combining 8022 quality-controlled MRIs from multiple large-scale data-bases, including 107 bvFTD, 44 semantic dementia, and 38 PNFA. RESULTS: We report in this manuscript the anatomical MRI staging schemes of the three FTD variants by describing the sequential divergence of volumetric trajectories between normal aging and FTD variants. Subcortical atrophy precedes focal cortical atrophy in specific behavioral and/or language networks, with a "radiological" prodromal phase lasting 8-10 years (time elapsed between the first structural alteration and canonical cortical atrophy). DISCUSSION: Amygdalar and striatal atrophy can be candidate biomarkers for future preclinical/prodromal FTD variants definitions. HIGHLIGHTS: We describe the chronological MRI staging of the most affected structures in the three frontotemporal dementia (FTD) syndromic variants. In behavioral variant of FTD (bvFTD): bilateral amygdalar, striatal, and insular atrophy precedes fronto-temporal atrophy. In semantic dementia: bilateral amygdalar atrophy precedes left temporal and hippocampal atrophy. In progressive non-fluent aphasia (PNFA): left striatal, insular, and thalamic atrophy precedes opercular atrophy.


Assuntos
Afasia , Demência Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Atrofia , Idioma
16.
Brain ; 146(6): 2524-2534, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382344

RESUMO

Progressive supranuclear palsy is a primary tauopathy affecting both neurons and glia and is responsible for both motor and cognitive symptoms. Recently, it has been suggested that progressive supranuclear palsy tauopathy may spread in the brain from cell to cell in a 'prion-like' manner. However, direct experimental evidence of this phenomenon, and its consequences on brain functions, is still lacking in primates. In this study, we first derived sarkosyl-insoluble tau fractions from post-mortem brains of patients with progressive supranuclear palsy. We also isolated the same fraction from age-matched control brains. Compared to control extracts, the in vitro characterization of progressive supranuclear palsy-tau fractions demonstrated a high seeding activity in P301S-tau expressing cells, displaying after incubation abnormally phosphorylated (AT8- and AT100-positivity), misfolded, filamentous (pentameric formyl thiophene acetic acid positive) and sarkosyl-insoluble tau. We bilaterally injected two male rhesus macaques in the supranigral area with this fraction of progressive supranuclear palsy-tau proteopathic seeds, and two other macaques with the control fraction. The quantitative analysis of kinematic features revealed that progressive supranuclear palsy-tau injected macaques exhibited symptoms suggestive of parkinsonism as early as 6 months after injection, remaining present until euthanasia at 18 months. An object retrieval task showed the progressive appearance of a significant dysexecutive syndrome in progressive supranuclear palsy-tau injected macaques compared to controls. We found AT8-positive staining and 4R-tau inclusions only in progressive supranuclear palsy-tau injected macaques. Characteristic pathological hallmarks of progressive supranuclear palsy, including globose and neurofibrillary tangles, tufted astrocytes and coiled bodies, were found close to the injection sites but also in connected brain regions that are known to be affected in progressive supranuclear palsy (striatum, pallidum, thalamus). Interestingly, while glial AT8-positive lesions were the most frequent near the injection site, we found mainly neuronal inclusions in the remote brain area, consistent with a neuronal transsynaptic spreading of the disease. Our results demonstrate that progressive supranuclear palsy patient-derived tau aggregates can induce motor and behavioural impairments in non-human primates related to the prion-like seeding and spreading of typical pathological progressive supranuclear palsy lesions. This pilot study paves the way for supporting progressive supranuclear palsy-tau injected macaque as a relevant animal model to accelerate drug development targeting this rare and fatal neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Paralisia Supranuclear Progressiva , Tauopatias , Animais , Masculino , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/metabolismo , Doenças Neurodegenerativas/patologia , Macaca mulatta/metabolismo , Projetos Piloto , Tauopatias/patologia , Encéfalo/patologia
17.
Alzheimers Dement ; 19(6): 2332-2342, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36464896

RESUMO

INTRODUCTION: Approximately 40% of dementia cases could be delayed or prevented acting on modifiable risk factors including hypertension. However, the mechanisms underlying the hypertension-dementia association are still poorly understood. METHODS: We conducted a cross-sectional analysis in 2048 patients from the MEMENTO cohort, a French multicenter clinic-based study of outpatients with either isolated cognitive complaints or mild cognitive impairment. Exposure to hypertension was defined as a combination of high blood pressure (BP) status and antihypertensive treatment intake. Pathway associations were examined through structural equation modeling integrating extensive collection of neuroimaging biomarkers and clinical data. RESULTS: Participants treated with high BP had significantly lower cognition compared to the others. This association was mediated by higher neurodegeneration and higher white matter hyperintensities load but not by Alzheimer's disease (AD) biomarkers. DISCUSSION: These results highlight the importance of controlling hypertension for prevention of cognitive decline and offer new insights on mechanisms underlying the hypertension-dementia association. HIGHLIGHTS: Paths of hypertension-cognition association were assessed by structural equation models. The hypertension-cognition association is not mediated by Alzheimer's disease biomarkers. The hypertension-cognition association is mediated by neurodegeneration and leukoaraiosis. Lower cognition was limited to participants treated with uncontrolled blood pressure. Blood pressure control could contribute to promote healthier brain aging.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Hipertensão , Humanos , Doença de Alzheimer/metabolismo , Estudos Transversais , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Biomarcadores , Peptídeos beta-Amiloides/metabolismo
18.
Neurology ; 100(5): e473-e484, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36261295

RESUMO

BACKGROUND AND OBJECTIVE: Blood biomarkers for Alzheimer disease (AD) have consistently proven to be associated with CSF or PET biomarkers and effectively discriminate AD from other neurodegenerative diseases. Our aim was to test their utility in clinical practice, from a multicentric unselected prospective cohort where patients presented with a large spectrum of cognitive deficits or complaints. METHODS: The MEMENTO cohort enrolled 2,323 outpatients with subjective cognitive complaint (SCC) or mild cognitive impairment (MCI) consulting in 26 French memory clinics. Participants had neuropsychological assessments, MRI, and blood sampling at baseline. CSF sampling and amyloid PET were optional. Baseline blood Aß42/40 ratio, total tau, p181-tau, and neurofilament light chain (NfL) were measured using a Simoa HD-X analyzer. An expert committee validated incident dementia cases during a 5-year follow-up period. RESULTS: Overall, 2,277 individuals had at least 1 baseline blood biomarker available (n = 357 for CSF subsample, n = 649 for PET subsample), among whom 257 were diagnosed with clinical AD/mixed dementia during follow-up. All blood biomarkers but total tau were mildly correlated with their equivalence in the CSF (r = 0.33 to 0.46, p < 0.0001) and were associated with amyloid-PET status (p < 0.0001). Blood p181-tau was the best blood biomarker to identify amyloid-PET positivity (area under the curve = 0.74 [95% CI = 0.69; 0.79]). Higher blood and CSF p181-tau and NfL concentrations were associated with accelerated time to AD dementia onset with similar incidence rates, whereas blood Aß42/40 was less efficient than CSF Aß42/40. Blood p181-tau alone was the best blood predictor of 5-year AD/mixed dementia risk (c-index = 0.73 [95% CI = 0.69; 0.77]); its accuracy was higher in patients with clinical dementia rating (CDR) = 0 (c-index = 0.83 [95% CI = 0.69; 0.97]) than in patients with CDR = 0.5 (c-index = 0.70 [95% CI = 0.66; 0.74]). A "clinical" reference model (combining demographics and neuropsychological assessment) predicted AD/mixed dementia risk with a c-index = 0.88 [95% CI = 0.86-0.91] and performance increased to 0.90 [95% CI = 0.88; 0.92] when adding blood p181-tau + Aß42/40. A "research" reference model (clinical model + apolipoprotein E genotype and AD signature on MRI) had a c-index = 0.91 [95% CI = 0.89-0.93] increasing to 0.92 [95% CI = 0.90; 0.93] when adding blood p181-tau + Aß42/40. Chronic kidney disease and vascular comorbidities did not affect predictive performances. DISCUSSION: In a clinic-based cohort of patients with SCC or MCI, blood biomarkers may be good hallmarks of underlying pathology but add little to 5-year dementia risk prediction models including traditional predictors.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demências Mistas , Humanos , Doença de Alzheimer/diagnóstico por imagem , Estudos Prospectivos , Peptídeos beta-Amiloides , Proteínas tau , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Fragmentos de Peptídeos
19.
Brain Commun ; 4(3): fcac109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592489

RESUMO

The chronological progression of brain atrophy over decades, from pre-symptomatic to dementia stages, has never been formally depicted in Alzheimer's disease. This is mainly due to the lack of cohorts with long enough MRI follow-ups in cognitively unimpaired young participants at baseline. To describe a spatiotemporal atrophy staging of Alzheimer's disease at the whole-brain level, we built extrapolated lifetime volumetric models of healthy and Alzheimer's disease brain structures by combining multiple large-scale databases (n = 3512 quality controlled MRI from 9 cohorts of subjects covering the entire lifespan, including 415 MRI from ADNI1, ADNI2 and AIBL for Alzheimer's disease patients). Then, we validated dynamic models based on cross-sectional data using external longitudinal data. Finally, we assessed the sequential divergence between normal aging and Alzheimer's disease volumetric trajectories and described the following staging of brain atrophy progression in Alzheimer's disease: (i) hippocampus and amygdala; (ii) middle temporal gyrus; (iii) entorhinal cortex, parahippocampal cortex and other temporal areas; (iv) striatum and thalamus and (v) middle frontal, cingular, parietal, insular cortices and pallidum. We concluded that this MRI scheme of atrophy progression in Alzheimer's disease was close but did not entirely overlap with Braak staging of tauopathy, with a 'reverse chronology' between limbic and entorhinal stages. Alzheimer's disease structural progression may be associated with local tau accumulation but may also be related to axonal degeneration in remote sites and other limbic-predominant associated proteinopathies.

20.
Hum Brain Mapp ; 43(10): 3270-3282, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35388950

RESUMO

In this article, we present an innovative MRI-based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal-Amygdalo-Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3-year follow-up). Compared to normative modeling, classical machine learning methods and recent state-of-the-art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well-suited for clinical practice or future pharmaceutical trials.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/patologia , Atrofia/diagnóstico por imagem , Atrofia/patologia , Disfunção Cognitiva/patologia , Progressão da Doença , Hipocampo/patologia , Humanos , Longevidade , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA